No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
There aren't any available sessions at this time.
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
{0} remaining of {1} character maximum.
Please enter a maximum of {0} words.
{0} remaining of {1} word maximum.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2018 GTC Washington DC

DC8103 - Simplifying AI for Communications, Radar, and Wireless Systems

Session Speakers
Session Description

Deep learning continues to show benefit in significant aspects of sensor systems including computer vision, speech recognition, and cybersecurity. In parallel, radio frequency (RF) systems have become increasingly complex and the number of connected devices will significantly increase as IoT and 5G systems become prevalent. Deep learning within RF systems is a new field of research that shows promise for dealing with a congested spectrum, brining reliability enhancements, and simplifying the ability to build effective signal processing systems. The utilization of deep learning algorithms within RF technology has shown superior results and the ability to classify signals well below the noise floor when compared to traditional signal processing methods. Working with strategic partners, we have designed a software configurable wide-band RF transceiver system capable of performing real-time signal processing and deep learning with an NVIDIA Jetson TX2. We discuss RF specific system performance, collection of RF training data, and the software used by the community to create custom applications. Additionally, we will present data demonstrating applications in the field of deep learning enabled RF systems.


Additional Information
Autonomous Machines and IoT
Deep Learning and AI, Autonomous Machines and IoT
Defense, Automotive, Internet / Telecommunications, Government / National Labs, Aerospace, Hardware / Semiconductor
All technical
Talk
50 minutes